== アポローンの神殿 ==
ギリシャやギリシャの植民地では、多くの神殿がアポローンに捧げられていた。アポローン崇拝が広まり、形の正しさと数学的関係に基づくものが多かったギリシャ建築が進化したことがわかる。特にクレタ島の最古の神殿のいくつかは、ギリシアのどの秩序にも属さないものである。最初の環状列石寺院は、長方形の木造建築だったようだ。木製のさまざまな部材は神とみなされ、その形はドーリス式神殿の大理石や石材の部材に残された。ギリシア人が標準型を用いたのは、物の世界は典型的な形の連続であり、いくつかの例で表現できると考えたからである。神殿はカノン式であるべきで、建築家はこの美的完成を目指した<ref>To know what a thing is, we must know the look of it": Rhys Carpenter: ''The esthetic basis of Greek art''. Indiana University Press. p. 108</ref>。古くから、長方形の周縁建築やプロスタイル建築には、ある種の規則が厳格に守られていた。最初の建物は、屋根を支えるために狭く作られており、寸法が変わると、元の形を保つために数学的な計算が必要になった。。古くから、長方形の周縁建築やプロスタイル建築には、ある種の規則が厳格に守られていた。最初の建物は、屋根を支えるために狭く作られており、寸法が変わると、元の形を保つために数学的な計算が必要になった。これは、物事の外見の裏に、数学の永久原理があると考えたピタゴラスの数論に影響を与えたと思われる<ref name="C. M. Bowra 1957 p. 166">C. M. Bowra (1957). ''The Greek experience'', p. 166.</ref>。
Many temples were dedicated to Apollo in Greece and the Greek colonies. They show the spread of the cult of Apollo and the evolution of the Greek architecture, which was mostly based on the rightness of form and on mathematical relations. Some of the earliest temples, especially in [[Crete]], do not belong to any Greek order. It seems that the first peripteral temples were rectangular wooden structures. The different wooden elements were considered [[divinity|divine]], and their forms were preserved in the marble or stone elements of the temples of [[Doric order]]. The Greeks used standard types because they believed that the world of objects was a series of typical forms which could be represented in several instances. The temples should be [[Canon (basic principle)|canonic]], and the architects were trying to achieve this esthetic perfection.From the earliest times there were certain rules strictly observed in rectangular peripteral and prostyle buildings. The first buildings were built narrowly in order to hold the roof, and when the dimensions changed some mathematical relations became necessary in order to keep the original forms. This probably influenced the theory of numbers of [[Pythagoras]], who believed that behind the appearance of things there was the permanent principle of mathematics.<ref name="C. M. Bowra 1957 p. 166">C. M. Bowra (1957). ''The Greek experience'', p. 166.</ref>
The [[Doric order]] dominated during the 6th and the 5th century BC but there was a mathematical problem regarding the position of the triglyphs, which couldn't be solved without changing the original forms. The order was almost abandoned for the [[Ionic order]], but the Ionic capital also posed an insoluble problem at the corner of a temple. Both orders were abandoned for the [[Corinthian order]] gradually during the Hellenistic age and under Rome.